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Abstract

In this study, a new approach for the dynamic localization model, which was originally proposed in Ghosal et al. [S.
Ghosal, T.S. Lund, P. Moin, K. Akselvoll, A dynamic localization model for large-eddy simulation of turbulent flows, J.
Fluid Mech. 286 (1995) 229–255], is described. This approach is integrated in a consistent manner into large eddy simu-
lation based on a variational formulation. As a result, the variationally formulated condition for the model parameter is
considered as an additional equation in a resulting system of two variational equations. This variational system may then
be implemented using either a finite element or a finite volume method. The new version of the dynamic localization model
proposed in this work has three advantages compared to the original dynamic localization model in Ghosal et al.: it relies
on a simpler formulation overall, it obviates any iterative solution procedure, and it requires the solution of a number of
small independent local equations instead of one large global equation. These three advantages make its solution theoret-
ically easier and computationally more efficient. The new consistent dynamic localization model is tested for two different
numerical flow examples, turbulent flow in a channel and turbulent flow in a planar asymmetric diffuser.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The modeling of the unresolved or subgrid scales is a crucial aspect of large eddy simulation (LES) of tur-
bulent flows. In the traditional LES, two different ways of subgrid-scale modeling may generally be distin-
guished according to [27]. One approach intends to approximate the subgrid-scale stress tensor s itself.
This strategy is called structural modeling. Another approach aims at modeling the (energetic) action of the
unresolved (or subgrid) scales on the resolved scales rather than modeling the tensor itself. This second strat-
egy is called functional modeling. A very popular form of functional modeling relies on the subgrid (or eddy)
viscosity concept, which is based on the Boussinesq turbulent (or eddy) viscosity assumption. According to
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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this concept, the deviatoric part of s is approximated by a product of a subgrid viscosity mT and the rate-of-
strain tensor of the resolved scales.

The remaining unknown in this form of functional modeling is the subgrid viscosity mT, and several approx-
imations for mT have been proposed in the meantime. The Smagorinsky [29] model was the first proposal in
this context and is still a commonly used one due to its simplicity. However, that model is still based on an
unknown parameter CS. Choosing a constant value for this parameter over the entire domain has been proven
to be an inadequate approach in most of the cases, although recent integrations of this simple constant-coef-
ficient-based Smagorinsky model into a multiscale environment have revitalized it and yielded very good
results for a number of test cases (see, e.g., [7,9,13,14,17]). Within the multiscale environment, the subgrid-
scale model is directly applied only to the smaller resolved scales after a separation of the range of resolved
scales. The reader may, for instance, consult the initial publication on the variational multiscale method
for LES (i.e., [12]) for the basic idea. For a specific finite-volume or combined finite-element/finite-volume
method within the variational multiscale LES, it is referred to [7,17], respectively. A comprehensive overview
has recently been provided in [8], see also references therein for further elaboration.

An important improvement of the Smagorinsky model was introduced in [5], where the model parameter
was determined as a function of position and time by way of a dynamic algorithm. It should be remarked that
this dynamic procedure is not restricted to the Smagorinsky model as the underlying model, although it has
mostly been used with that model. The original formulation of the dynamic algorithm in [5] contained a math-
ematically inconsistent assumption, which disregarded the fact that CS is a rapidly varying function of posi-
tion, as discussed in [22].

This inconsistency was later overcome in [6] by the introduction of the dynamic localization model. Fur-
thermore, ad hoc schemes were addressed in this publication, which were usually applied in practical simula-
tions to prevent them from becoming unstable. By using those ad hoc schemes, the application of the dynamic
model in several problem configurations was enabled, without, however, being justified except in a heuristic
way. Overall, the study in [6] aimed at ‘‘putting the dynamic modeling procedure on firm theoretical founda-
tions, so that the method could be applied to arbitrary inhomogeneous flows without recourse to ad hoc pro-
cedures’’. After all, however, the actual way of calculating the model parameter based on a variationally
formulated condition for CS, which eventually had to make use of Fredholm’s integral equation of the second
kind for its solution, appeared to be rather complicated. Moreover, an iterative procedure was necessary to
actually solve this integral equation in practical calculations, which made it a computationally expensive part
of the overall simulation. This study was complemented by another study in [2], which addressed the issue of
representing backscatter in the dynamic localization model by a stochastic modeling approach.

In an approximate version of the dynamic localization model proposed in [26], an iterative procedure was
avoided by using an approximation in time, which, however, was accurate only up to the respective order of
accuracy of the temporal approximation scheme. Moreover, this method faced, on the one hand, potential
numerical instabilities and, on the other hand, potential inaccuracies in the case of rapid variations in the tem-
poral evolution of the function, as admitted in [26]. However, the authors assumed the evolution of CS to be a
fairly slowly varying function of time due to the temporal filtering, which is implicitly introduced by the spatial
filtering. Another recent approach in [31] makes the dynamic localization model less demanding by relying on
an averaging procedure over homogeneous coordinate directions. However, this approach is not applicable to
arbitrary inhomogeneous flows.

In the present study, LES is based on a variational formulation. In contrast to a traditional filter-based for-
mulation, the resolution of the underlying numerical discretization is used to define the resolved part of the
velocity uh, with the superscript h indicating the characteristic length scale of the discretization. It should
be remarked that this is actually a usual way of defining the resolved scales in practical LES, whenever the
respective discretization is assumed to act as an implicit filter, and no further explicit filter is applied. The rea-
son for introducing a subgrid-scale model in the variational formulation is mathematically different from the
usual necessity of introducing a model term due to the appearance of a subgrid-scale stress tensor in the strong
formulation of the Navier–Stokes equations in a traditional LES. Nevertheless, the physical necessity of
accounting for the missing effect of unresolved scales on the resolved scales is the same in both cases. In order
to account for this effect in the present study, it is resorted to the subgrid viscosity concept and, furthermore,
the Smagorinsky model as one way of functional modeling, as mentioned above. Within a variational formu-
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lation of the Navier–Stokes equations, the variationally formulated condition for CS in the dynamic localiza-
tion model according to [6] may easily be integrated to get a system of two variational equations. Hence, a
consistent formulation in that both the underlying equation system (i.e., the incompressible Navier–Stokes
equations) and the equation for CS are in variational form is achieved.

A crucial ingredient of a dynamic modeling procedure is the separation of the resolved scales into large and
small resolved scales. While this separation may easily be done in spectral space by using a sharp cutoff filter,
discrete smooth filters are usually applied in physical space. However, scale-separating operators based on
combined multigrid operators were recently proposed in [7] as an alternative way of separating the scales.
A similar multigrid approach within a finite volume method was proposed in [30]. A mathematical analysis
of multilevel approaches for the numerical simulation of turbulent flows can be found in [3]. It was shown
in [7,9] that multigrid-based scale-separating operators, in particular one which provides a projective scale sep-
aration are superior in terms of quality of results and computational efficiency compared to discrete smooth
filters. This projective operator, also serves as the basis for the version of the dynamic localization model to be
developed in this work. This consistent dynamic localization model will also be tested in the context of the
variational multiscale LES. As mentioned above, the separation of the resolved scales in the variational mul-
tiscale LES is not only needed for the calculation of the model parameter, but also for the identification of the
smaller resolved scales, to which the subgrid-scale model is eventually applied. The scale-separating operators
based on combined multigrid operators are well-suited to serve both these purposes, as already shown in [7,9]
for a ‘‘standard’’ dynamic modeling procedure according to [5].

The final variational equation system may serve as the starting point for either a finite element or a finite vol-
ume formulation. A particular finite element method for variational multiscale LES may be found in [10], and
the aspects of a finite volume formulation for variational multiscale LES were described in [7]. In this work, all
theoretical developments will be done in a general manner, so that both finite element and finite volume imple-
mentations may easily be derived from it. The simulations at the end of this study have been conducted using the
CDP-a code, the flagship LES code of the Center for Turbulence Research. Underlying this code is a finite vol-
ume method particularly suited for applications in complex geometries on unstructured grids.

The remainder of this paper is organized as follows. In Section 2, the basic and multiscale variational for-
mulations are introduced, and the separation of scales using the projective scale-separating operator is out-
lined. Section 3 contains the dynamic modeling procedures, including a brief description of the original
dynamic model with various ad hoc schemes and the development of the new approach for the dynamic local-
ization model. The results for two numerical flow examples, turbulent flow in a channel and turbulent flow in a
diffuser, are shown in Section 4. Within these applications, the consistent dynamic localization model is com-
pared to the dynamic model with ad hoc schemes, which were previously used for the respective flow examples.
In Section 5, conclusions are drawn from this study.
2. Variational formulations and separation of scales

2.1. Basic and multiscale variational formulation of the incompressible Navier–Stokes equations

The set of incompressible Navier–Stokes equations is given as
ou

ot
þr � ðu� uÞ þ rp � 2mr � eðuÞ ¼ f in X� ð0; T Þ; ð1Þ

r � u ¼ 0 in X� ð0; T Þ; ð2Þ

where u denotes the velocity vector, p the kinematic pressure (i.e., pressure divided by density), m the kinematic
viscosity, f the body force vector, X the domain of the problem, and T the simulation time. An initial condition
u ¼ u0 in X� f0g; ð3Þ

where the initial velocity field u0 is assumed to be divergence-free, is also given. Furthermore, a Dirichlet
boundary condition
u ¼ g on Cg � ð0; T Þ ð4Þ

is prescribed on the respective subset Cg of the domain boundary C.
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A variational form of the Navier–Stokes equations may be achieved by starting with a weighted residual
formulation as
BNSðm; q; u; pÞ ¼ ðm; f ÞX 8fm; qg 2Vup; ð5Þ

where Vup denotes the combined form of the weighting function spaces for velocity and pressure in the sense
that Vup :¼Vu �Vp. The form BNS(m,q;u,p) on the left hand side is hereby defined as
BNSðm; q; u; pÞ ¼
Z

X
m
ou

ot
dXþ

Z
X

mr � ðu� uÞdXþ
Z

X
mrpdX�

Z
X

m2mr � eðuÞdX�
Z

X
qr � udX; ð6Þ
with m and q denoting the weighting functions. The L2-inner product in the domain X on the right hand side is
defined as usual:
ðm; f ÞX ¼
Z

X
mf dX. ð7Þ
The weighted residual formulation defined in (5)–(7) may serve as the starting point for either a finite element
or a finite volume formulation. A more detailed discussion of the finite element formulation can be found, for
instance, in [10]. The corresponding development for a finite volume formulation is provided in [7].

In either case, the prerequisite for the application of the respective method is a discretization of the domain
X into n elements or control volumes Xi (i = 1, . . . , n) with element or control volume boundaries Ci, respec-
tively. In the following, it will be referred to Xi as an ‘‘element’’ for brevity, which is, however, assumed to be
replaced by the notation ‘‘control volume’’ in the context of the finite volume method. With h denoting the
characteristic length scale of the discretization, the variational formulation for the discrete weighting and solu-
tion functions reads as
BNSðmh; qh; uh; phÞ ¼ ðmh; f ÞX 8fmh; qhg 2Vh
up; ð8Þ
where Vh
up indicates the discrete weighting function space, and the appropriate integration-by-parts proce-

dures have to be implemented for either the finite element or the finite volume method, see [10] or [7],
respectively. In LES, the characteristic length scale h is usually considerably larger than the order of the
smallest length scale of the problem. Thus, a large number of scales cannot be explicitly resolved. Therefore,
the subgrid viscosity approach as a way of taking into account the (dissipative) effect of the unresolved
scales is applied. According to this, a subgrid viscosity term in weighted formulation is added to (8), result-
ing in
BNSðmh; qh; uh; phÞ � ðmh;r � ð2mTeðuhÞÞÞX ¼ ðmh; f ÞX 8fmh; qhg 2Vh
up; ð9Þ
where mT denotes the subgrid viscosity. The weighted subgrid viscosity term in (9) is also given without any
integration-by-parts procedure, in order to keep the notation open for the application of the respective numer-
ical method, which results in a variationally formulated subgrid viscosity term eventually.

An alternative approach is LES based on the variational multiscale method, where the weighted subgrid
viscosity term is only added to the smaller scales of the resolved scale range as
BNSðmh; qh; uh; phÞ � ðm0h;r � ð2m0Teðu0hÞÞÞX ¼ ðmh; f ÞX 8fmh; qhg 2Vh
up; m

0h 2V0h
up; ð10Þ
where m 0h and u 0h denote the small-scale part of the velocity weighting and solution function, respectively. In
(10), the subgrid viscosity term with the subgrid viscosity m0T directly acts only on the small resolved scales.
Indirect influence on the large resolved scales, however, is ensured due to the coupling of the large and the
small resolved scales (see, e.g., [7] for details).

The goal of this work is to find appropriate modeling approaches for the subgrid viscosity mT and m0T, respec-
tively, in the context of a variational formulation. Before turning to this issue, effective ways to separate the
resolved scales of the problem (i.e., to differentiate the larger and the smaller resolved scales) are required to be
established. For the multiscale formulation (10), the necessity for the separation is already obvious in the for-
mulation itself. However, irrespective of the range of resolved scales, which the subgrid viscosity is added to
(i.e. the complete range in (9) or the range of smaller scales in (10)), any dynamic modeling procedure accord-
ing to [5] requires such a separation of scales, as will be shown below.



V. Gravemeier / Journal of Computational Physics 218 (2006) 677–701 681
2.2. Projective scale separation

The scale separation used in this work relies on combined multigrid operators, and it was originally pre-
sented in [7]. It refers to the level of complete resolution indicated by the characteristic length h and identifies
a priori a large-scale resolution level with respect to this complete resolution level characterized by the length
�h, where �h > h. As a result, a large-scale part of the velocity �u

�h on the large-scale resolution level is extracted.
The small-scale part of the velocity is defined on the level of complete resolution, which is characterized by the
length h, as
u0h ¼ uh � �uh; ð11Þ

where �uh is the large-scale value transferred to this level. In practice, two grids are created: a coarser grid,
which is called the ‘‘parent’’ grid, and a finer grid, which is called the ‘‘child’’ grid. The child grid is obtained
by an isotropic hierarchical subdivision of the parent grid. More details concerning the implementation can be
found in [7].

The general class of scale-separating operators based on multigrid operators is formulated as
�uh ¼ Sm½uh� ¼ P � R½uh� ¼ P ½�u�h�; ð12Þ

where the scale-separating operator Sm consists of the sequential application of a restriction operator R and a
prolongation operator P. Applying the restriction operator on uh yields a large-scale velocity �u

�h defined at the
degrees of freedom of the parent grid, which is then prolongated, in order to obtain a large-scale velocity �uh

defined at the degrees of freedom of the child grid. Various restriction as well as prolongation operators may
be used in (12). Two special combinations of restriction and prolongation operators were analyzed and used in
[7,9]. Both of them rely on the same restriction operator, but apply different prolongation operators after-
wards. The restriction operator R is defined to be a volume-weighted average over all the child elements within
one parent element subject to
�u
�h
j ¼

Pncop

i¼1 jXijuh
iPncop

i¼1 jXij
; ð13Þ
where �u
�h
j denotes the large-scale velocity at the center of the parent element �Xj and ncop the number of child

elements in �Xj. It was proven in [7] that only one of the two applied prolongation operators leads to a pro-
jective operator overall. The prolongation operator Pp yields a constant prolongation as
�uh
i ¼ P p �u

�h
j

h i
i
¼ �u

�h
j 8Xi � �Xj ð14Þ
and zero elsewhere. The complete scale-separating operator is defined as
Spm :¼ P p � R. ð15Þ

The property of a projector is indicated by the additional superscript ‘‘p’’.

3. Dynamic modeling procedures

All dynamic modeling procedures to be presented below use the Smagorinsky model [29] as its underlying
model formulation. Thus, the subgrid viscosity is given as
mT ¼ ðCShÞ2jeðuhÞj; ð16Þ

where e(uh) denotes the rate-of-strain tensor of the resolved scales. In the multiscale case, the dependence is
restricted to the small scales as
m0T ¼ ðCShÞ2jeðu0hÞj ¼ ðCShÞ2jeðuh � �uhÞj. ð17Þ

The dynamic modeling procedure originally proposed in [5] relies on the Germano identity, see also [4]. This
identity refers to a pointwise formulation of the Navier–Stokes equations for the discretized variables uh and
ph, which already contains a subgrid-scale stress tensor to account for the scales still unresolved by this dis-
cretization. Hence, the momentum equation may be given as
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ouh

ot
þr � ðuh � uhÞ þ rph � 2mr � eðuhÞ þ r � sh ¼ f h; ð18Þ
where the only term added to a straightforward discretization of (1), the subgrid-scale stress tensor, is defined
as
sh ¼ ðu� uÞh � uh � uh. ð19Þ

Note that in (18) and (19) the usual filtered formulation is replaced by the actual implicit scale separation based
on the chosen discretization with characteristic length scale h. The ‘‘test filter’’ is replaced by the scale-separating
operator Spm. Thus, the analog of the ‘‘subtest’’-scale stress tensor can be expressed as
�sh ¼ Spm½ðu� uÞh� � Spm½uh� � Spm½uh�. ð20Þ

Following this approach yields a value for the parameter CS of the Smagorinsky model at every degree of free-
dom of the child grid. However, it was shown in [7] that the application of the scale-separating operators based
on combined multigrid operators opens up the opportunity to determine the values only at the degrees of free-
dom of the parent grid. This is achieved by using the restriction operator R exclusively. In this work, the focus
is on the formulation (20), where the complete scale-separating operator Spm is applied.

3.1. Dynamic model using various ad hoc schemes

The Germano identity states the following:
Lh ¼ �sh � Spm½sh�; ð21Þ

where Lh can be obtained as
Lh ¼ Spm½uh � uh� � Spm½uh� � Spm½uh� ð22Þ

by inserting (19) and (20) into (21).

Assuming the Smagorinsky model as an appropriate modeling term at both discretization levels and
accounting for the fact that the Smagorinsky model is basically a ‘‘trace-free’’ model in the context of incom-
pressible flow, Eq. (21) is modeled as follows:
dev Lh ¼ Lh � 1

3
trLhI 	 �2ðCS

�hÞ2jSpm½eðuhÞ�jSpm½eðuhÞ� þ Spm 2ðCShÞ2jeðuhÞjeðuhÞ
h i

; ð23Þ
where I denotes the identity tensor, and modeling is obviously confined to the deviatoric part of the tensor Lh.
It is now assumed that CS is constant over one element of the parent grid. Hence, Eq. (23) may be rewritten as
dev Lh 	 Ch
S 2Spm½jeðuhÞjeðuhÞ� � 2

�h
h

� �2

jSpm½jeðuhÞ�jSpm½eðuhÞ�
 !

¼ Ch
SMh; ð24Þ
where the parameter expression (CSh)2 is denoted by Ch
S here and below. This assumption neglects the impor-

tant observation that CS is a rapidly varying function of position, see [22]. This observation gave rise to the
development of the dynamic localization model in [6]. However, following this assumption enables the calcu-
lation of the parameter expression Ch

S on the right hand side of (24) as a minimization of the error tensor
Eh ¼ devLh � Ch
SMh. ð25Þ
For this purpose, the least-squares approach proposed by [19] aims at fulfilling the minimization condition
oðEhEhÞ
oCh

S

¼ 2Ch
SMhMh � 2dev LhMh ¼ 0; ð26Þ
which, finally, leads to a formula for Ch
S as
Ch
S ¼

devLhMh

MhMh . ð27Þ



V. Gravemeier / Journal of Computational Physics 218 (2006) 677–701 683
Potential numerical problems may have to be faced related to either unbounded or negative (and, thus, anti-
dissipative) values of Ch

S jeopardizing the stability of the simulation. Various ad hoc schemes have been used to
avoid this potential instability. In a channel, the first numerical example of this work, both numerator and
denominator in (27) are usually averaged over the homogeneous planes, exploiting the homogeneity of the
flow in two coordinate directions. Additionally, clipping may be performed (i.e., potential negative values
of Ch

S (and, hence, CS) are set to zero artificially) subject to
Ch
S ¼

1

2
ðCh

S þ jCh
S jÞ. ð28Þ
The dynamic model with averaging and clipping will be abbreviated DAMC (Dynamic Averaged Model with
Clipping) in the context of the turbulent flow simulations in a channel in Section 4.

In the second numerical example of this work, a planar asymmetric diffuser, only one homogeneous direc-
tion exists. Of course, it may still be averaged over the remaining homogeneous direction. This approach with
additional clipping in the sense of (28) was used for the second numerical example in [6], turbulent flow over a
backward-facing step, which also exhibits one homogenous direction. It is, however, unquestionable that such
an approach is inapplicable for all flow problems exhibiting no homogeneous direction at all.

One alternative for completely inhomogeneous flows is a procedure of local ‘‘smoothing’’ by averaging
over neighbouring grid cells. This strategy was proposed and applied to turbulent flow in a lid-driven
cavity in [33]. Additionally, a slightly different clipping was performed, in order to ensure that the total
viscosity remains positive. Another alternative is the special clipping procedure proposed in [20] without
any averaging or local smoothing. Here, the same values for CS as above are used as long as CS remains
positive. As soon as CS becomes negative, a different strategy is pursued. The parameter expression Ch

S is
then calculated using
Ch
S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
devLhdevLh

MhMh

s
ð29Þ
instead of (27). Obviously, using (29) ensures a positive value for Ch
S and, hence, for CS. The idea leading to

(29) formulates the modeling relation as
devLh ¼ Ch
SMh. ð30Þ
Contracting with itself both the left and the right hand side as
devLhdevLh ¼ ðCh
SÞ

2
MhMh ð31Þ
finally leads to (29). The dynamic model with the special clipping procedure using (29) will be abbreviated
DMSC (Dynamic Model with Special Clipping) in the context of the simulations in Section 4. As already
declared in [6], all of the aforementioned ad hoc schemes cannot be justified except in a heuristic way.

3.2. Dynamic localization model

The dynamic localization model is also based on the Germano identity (i.e., Eqs. (21)–(23) are still valid).
However, the parameter expression Ch

S is not taken out of the scale-separating operation and, thus, the related
mathematical inconsistency is taken back. As a result, the error tensor is rewritten as
Eh ¼ devLh � Ch
SAh þ Spm½Ch

SBh�; ð32Þ

where
Ah ¼ �2
�h
h

� �2

jSpm½eðuhÞ�jSpm½eðuhÞ� ð33Þ
and
Bh ¼ �2jeðuhÞjeðuhÞ. ð34Þ
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The scale-separating operator Spm in (32) raises the dependency of the value for Ch
S in one child element to all

other child elements within the same parent element. Using, for example, the alternative scale-separating oper-
ator Ssm proposed in [7] would extend the dependency by including child elements in neighbouring parent ele-
ments. Due to the extended dependency, a minimization procedure restricted to one point as expressed in (26)
is no longer possible. Thus, the functional
F½Ch
S� ¼

Z
X

EhEhdX ð35Þ
was chosen in [6] to enforce a minimization in an integral sense over the entire domain X. Setting the variation
of F to zero results in
dF½Ch
S� ¼ 2

Z
X

dEhEhdX ¼ 0. ð36Þ
In [6], a strong solution of the corresponding Euler–Lagrange equation was searched. This led to a rather com-
plicated equation for Ch

S in form of Fredholm’s integral equation of the second kind, which was solved in an
iterative procedure. All of this is not necessary here. Instead, this work proposes that Eq. (36) be considered as
another variational equation to be solved in addition to the basic variational Eqs. (9) or (10), respectively.
Thus, a system of two variational equations is established.

Remark. The solution of (36) may follow the so-called ‘‘variational principle’’, a concept well-known in the
context of the finite element method. The reader may consult a standard textbook on the finite element
method, such as [34], for elaboration. The variational principle specifies a functional depending in an integral
form on an unknown function, which is here represented by the functional F and the unknown function
Ch

Sðx; tÞ. The solution for the problem is a function Ch
S which makes F stationary with respect to small

changes dCh
S. For this purpose, the variation dF is set to zero, as shown in (36). The small change dCh

S is
implicitly contained in the small change dEh in the error tensor function Eh in (36) and will be revealed below.
As aforementioned, the variational principle is well-established in the finite element method, but only for
problems, for which such a functional can be found. This requirement excludes a multitude of mechanical
problems, among others, the present Navier–Stokes problem. Thus, the Navier–Stokes equations have been
introduced into a weighted residual formulation above, which is the alternative and more general concept
within the finite element method. However, both concepts, the weighted residual formulation and the
variational principle, eventually lead to a variational formulation in the finite element method.

The problem is that, in general, the variational principle is not an appropriate concept in the finite volume
method, which is intended to be applied in the numerical simulations below. In general, finite volume methods
may be thought as Petrov–Galerkin methods, where the weighting function is a constant over the control vol-
ume. Under the particular circumstances of this relatively simple case (i.e., no derivatives of Ch

S contained in
the error tensor function (32)), however, a similar solution approach for (36) may also be pursued with the
finite volume method. Inserting (32) into (36) yields
2

Z
X
ð�dCh

SAh þ Spm½dCh
SBh�Þðdev Lh � Ch

SAh þ Spm½Ch
SBh�ÞdX ¼ 0; ð37Þ
which can be rearranged as
Z
X

dCh
SAhCh

SAhdX�
Z

X
dCh

SAhSpm½Ch
SBh�dX�

Z
X

Spm½dCh
SBh�Ch

SAhdXþ
Z

X
Spm½dCh

SBh�Spm½Ch
SBh�dX

¼
Z

X
dCh

SAhdevLhdX�
Z

X
Spm½dCh

SBh�devLhdX. ð38Þ
The first line of (38) contains the terms including the non-projected weighting function dCh
S and the

projected weighting function dCh
S, respectively, and the second line the known terms depending on the

deviatoric part of the tensor Lh, weighted either by the non-projected or by the projected weighting function
dCh

S.
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Note that (38) does not contain any derivatives of the function Ch
S . Thus, a third crucial advantage of the

present approach with respect to [6], besides the advantages of a simpler formulation and no need for an iter-
ative solution approach, can be attributed to the fact that (38) does not need to be solved as a global equation
over the entire domain. It may rather be solved as a number of substantially smaller local equations, since the
coupling of the values due to Spm exists only within the range of each parent element. Thus, a sample equation
defined in the parent element �Xj is given as
Xncop

i¼1

Z
Xi

dCh
SAhCh

SAhdX�
Xncop

i¼1

Z
Xi

dCh
SAhSpm½Ch

SBh�dX�
Xncop

i¼1

Z
Xi

Spm½dCh
SBh�Ch

SAhdX

þ
Xncop

i¼1

Z
Xi

Spm½dCh
SBh�Spm½Ch

SBh�dX ¼
Xncop

i¼1

Z
Xi

dCh
SAhdevLhdX�

Xncop

i¼1

Z
Xi

Spm½dCh
SBh�devLhdX; ð39Þ
where, again, ncop denotes the number of child elements Xi in �Xj. All equations of type (39) can be solved inde-
pendently. Thus, they are parallel to full extent in a multi-processor calculation, giving rise to substantial com-
putational savings.

In Eq. (38), one has to deal exclusively with volume integrals. These may likewise be defined over element
domains in a finite element method or over control volume domains in a finite volume method. The simplest
approximation is chosen here by using discontinuous ansatz functions for the weighting and solution functions
in a finite element method as well as for the solution function in a finite volume method. The weighting func-
tion in a finite volume method is already defined to be constant a priori (i.e., dCh

S ¼ 1 for the present case). In
the end, one equation of type (39) has to be solved in each parent element. Thus, the overall number of equa-
tions which have to be solved is equal to the number of parent elements in the domain. The matrices resulting
from each of these equations are of size ncop · ncop. Usually (i.e., for hexahedral and tetrahedral elements),
these amount to be 8 · 8 matrices. In the numerical simulations below, a direct solver, which is contained
in the LAPACK solver package for dense linear systems, is used for the solution of these relatively small
matrices.

Although the mathematical inconsistency is adequately addressed by this approach, the problem of obtain-
ing potentially negative values for Ch

S and, hence, for CS still exists. In [6], the constraint CS P 0 was directly
imposed. Analogous to this, clipping in the sense of (28) is also enforced for the numerical simulations of this
work. Thus, the present approach resembles the dynamic localization model (constrained) in [6]. It will be
abbreviated DLMC in Section 4.

Remark. An alternative model, which is called the dynamic localization model (k-equation), was also
proposed in [6]. The crucial feature of this model is that it allows for backscatter of energy (i.e., CS is allowed
to take negative values). The sub grid-scale kinetic energy k is monitored, though, in order to rule out un-
physical negative values. The drawback of this model is the enormous effort linked with it. Since the sub grid-
scale kinetic energy appears in the model formulation, a global transport equation must be solved for k. The
present approach is basically open to this. In this case, the already existing system of two variational equations
would be extended by an additional global scalar equation, which might be solved as a variational equation,
too. Furthermore, two equations would have to be solved for two parameters appearing in the transport
equation for k. These equations are similar in their structure to the one which has to be solved for Ch

S (i.e., they
may also be dealt with as a number of local equations). Thus, the dynamic localization model (k-equation) in
the context of the present approach would require the solution of one additional global equation and two
additional local equation systems.
4. Numerical examples

All numerical simulations in this section are conducted using the CDP-a code, an unstructured finite-
volume-based CFD code designed for LES of variable density low Mach-number flows on very large grids using
massively parallel computers (see, e.g., [11] and references therein). The main features are the use of a frac-
tional-step procedure and a momentum interpolation method for unstructured grids. The Crank–Nicolson
scheme, a fully implicit time-stepping scheme of second-order accuracy, is applied to the convective and viscous
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terms, and, furthermore, the non-linear convective term is linearized about the result of the previous time step.
All spatial and temporal approximations are of second-order accuracy. Furthermore, discrete conservation of
energy is enforced. See [21] for this important aspect of the code. The matrix resulting from the momentum
equation is solved using a simple iterative SOR procedure. For the solution of the pressure Poisson equation,
an algebraic multigrid solver is used. See [11] for the details as well as some investigations concerning the per-
formance of this multigrid solver. For comparison, simulations using no model at all (NM) are performed for
both numerical examples. The multiscale simulations are indicated by adding ‘‘-MS’’ to the respective method
abbreviation.

4.1. Turbulent channel flow

The numerical setup for turbulent flow in a channel is basically identical to that described in [7]. Flows at
two different Reynolds numbers, Res = usdc/m = 180 and Res = 590, are simulated marking the lower and
upper end of the study in [24]. us and dc denote the turbulent wall-shear velocity and the channel half-width,
respectively. The channel dimensions are chosen according to [24] for the two cases. A parabolic velocity
profile perturbed by a random velocity fluctuation of 10%-amplitude of the bulk mean streamwise velocity
represents the initial condition u0 for the velocity field, see [7] for details. No-slip boundary conditions are
applied at the upper and lower wall in x2-direction. In x1- as well as x3-direction, periodic boundary con-
ditions for the velocity are applied. As the driving mechanism for the flow, a body force is imposed in form
of a driving pressure gradient in the streamwise x1-direction. The respective time step value for the temporal
discretization is evaluated based on a fixed choice of the CFL number. The CFL number is hereby calcu-
lated according to the definition in [16]. For both Reynolds numbers, the CFL number is prescribed to be
0.65. 5000 time steps are performed to allow the flow to develop, and the statistics are collected during
another 5000 time steps.

In the first part of the channel flow study, the spatial discretization for the lower Reynolds number case
employs 32 control volumes in each coordinate direction. For the higher Reynolds number case, a discretiza-
tion with 64 control volumes in each coordinate direction is employed. The distribution of control volumes in
the wall-normal x2-direction obeys a cosine function refining towards the walls for the parent grid, with the
subsequent isotropic hierarchical subdivision procedure applied. In the second part, a grid refinement study
for the higher Reynolds number case is conducted using the grid with 32 control volumes in each coordinate
direction also for this case. Furthermore, grids employing 48 and 80 control volumes, respectively, are applied.
Based on the findings in [7], the characteristic length scale ratio �h=h for all simulations including a dynamic
model is set to 2.5 for the, here exclusively used, scale-separating operator Spm.

At first, the mean streamwise resolved velocity huh
1i is analyzed. Mean values are obtained by averaging

over all time steps of the statistical period as well as over homogeneous x1–x3-planes. The mean values are
scaled by the wall-shear velocity us, which is calculated for each method at each resolution level, in the
respective diagrams. Figs. 1 and 2 depict the results for the lower and higher Reynolds number case, respec-
tively. Due to the second-order accuracy of the underlying numerical method and the relatively coarse dis-
cretization, all LES profiles depart considerably from the DNS profile. The differences between the dynamic
averaged model with clipping (DAMC) and the present dynamic localization model (DLMC) are relatively
small in both cases. There is also hardly any notable difference between using DAMC and DLMC within a
multiscale or non-multiscale environment, which confirms observations in [7]. It is emphasized that none of
the dynamic modeling approaches provides better results than the ones obtained with no model (NM). This
is in accordance with results in [18,28], where a second-order accurate numerical method was used for sim-
ulations with the DAMC and, among other things, compared to no-model calculations. For the mean
streamwise velocity profiles, DAMC was more or less clearly outperformed by NM at even higher Reynolds
numbers Res 	 1000 and Res 	 1800 than the ones investigated in the present study. Notable deviations of
the profiles from the respective DNS profiles due to the use of a second-order accurate method, combined
with a relatively coarse resolution, were also observed in [30] for flows at the same Reynolds numbers used
in the present work. All those observations, including the ones made in this study, raise doubts about the
usefulness of any dynamic subgrid-scale modeling approach of this form within a second-order accurate
numerical method.
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The turbulent kinetic energy of the resolved scales subject to
kh ¼ 1
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is investigated in Figs. 3 and 4, respectively. The kinetic energy values are scaled by u2
s in the respective dia-

grams. As for the mean streamwise resolved velocity, hardly any difference between any of the applied meth-
ods can be recognized. The only notable discrepancy is produced by DAMC for the peak of the turbulent
kinetic energy in the lower Reynolds number case. This peak is considerably more overpredicted by this
method.
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Fig. 3. Turbulent kinetic energy at Res = 180.
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The mean value of the dynamically determined parameter ÆCSæ is evaluated and compared in Figs. 5 and 6,
respectively. The profiles for all methods are similar in the lower Reynolds number case, see Fig. 5. For both
DAMC and DLMC, the application within a multiscale environment produces slightly higher values, again
confirming observations in [7]. Furthermore, higher values are obtained for DLMC in comparison to DAMC.
For the higher Reynolds number case, the profiles appear to be slightly different, see Fig. 6. Notable peaks
emerge relatively close to the walls for DLMC.
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Fig. 6. Mean value of model parameter CS at Res = 590.
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In Figs. 7 and 8, the profiles for the root-mean-square value Crms
S of the dynamically determined parameter

CS are shown. Significant discrepancies between DAMC and DLMC can be observed. With Crms
S almost being

negligible for DAMC, very high values overall including distinct peaks are obtained with DLMC. This
confirms that a rapidly varying function CS is indeed produced by the dynamic localization model, which
is consistent with the original intention for introducing this model in [6]. In Tables 1 and 2, the picture is quan-
tified for both cases, respectively, by determining volume-averaged mean and root-mean-square values for CS

over the entire domain. The mean values are very close for all methods in both cases. However, substantially
higher root-mean-square values are yielded by DLMC compared to DAMC. The root-mean-square values are
about 15% and 5% in the lower and higher Reynolds number case, respectively, of the mean value for DAMC.
For DLMC, these ratios exceed 300% in both cases (i.e., the standard deviation amounts to more than three
times the mean value).

In the second part of the channel flow study, the influence of the discretization level is investigated. The
application of DAMC and DLMC within the multiscale environment will be considered no further in this part
or in the subsequent diffuser study. This is due to the fact that, consistent with the results in [7], only minor
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Table 1
Volume-averaged mean and root-mean-square values of model parameter CS at Res = 180

(1): Mean value (2): Rms value (3) = (2)/(1) [%]

DAMC 0.067 0.011 16.85
DAMC-MS 0.071 0.010 14.21
DLMC 0.071 0.231 324.52
DLMC-MS 0.074 0.224 302.07



Table 2
Volume-averaged mean and root-mean-square values of model parameter CS at Res = 590

(1): Mean value (2): Rms value (3) = (2)/(1) [%]

DAMC 0.073 0.004 5.64
DAMC-MS 0.073 0.004 6.06
DLMC 0.077 0.272 352.90
DLMC-MS 0.079 0.252 317.71
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differences can be observed in comparison to the non-multiscale application. It is referred to [7] for elaboration
of the comparative investigation of subgrid-scale modeling approaches within multiscale and non-multiscale
methods. Furthermore, the grid refinement study is restricted to the higher Reynolds number case with
Res = 590. Fig. 9 shows the mean streamwise resolved velocity for this case using 4 different discretization lev-
els. By comparing Fig. 9(a) and (b), it is observed that both DAMC and DLMC yield approximately the same
convergence to the DNS profile for the two coarser discretizations. For the two finer discretizations, however,
in particular the one with 80 control volumes in each coordinate direction, DAMC provides a prediction of the
velocity profile which is notably closer to the DNS profile than the one for DLMC.

In Fig. 10, the effect of the discretization level on the turbulent kinetic energy is analyzed. Here, DLMC
provides a better prediction for the coarsest discretization. Towards the finer discretization, however, the pic-
ture changes again in favor of DAMC. Nevertheless, both methods produce approximately the same results
for the turbulent kinetic energy profile on the finest discretization, which is in contrast to the mean streamwise
velocity, where DAMC provided better results on this discretization level. In conclusion of all results obtained
from the numerical simulations of turbulent flow in a channel, it is stated that DLMC overall produces results
comparable but not superior to DAMC.

The grid refinement effect on the mean value ÆCSæ of the model parameter is shown in Fig. 11. It may be
observed that refining the discretization even influences the structure of the profile slightly in the central sec-
tion of the channel for DAMC. Only for the two coarser discretizations, a distinct valley in the profile appears
towards the channel center. This valley vanishes for the two finer discretizations. For DLMC, the profiles are
shifted almost in parallel in the central section of the channel. For both methods, the peak values decrease and
move towards the walls as the discretization becomes finer. For DAMC, this is consistent with observations in
[23].

The profiles for the root-mean-square value Crms
S are illustrated in Fig. 12. Whereas the profiles for

DAMC are almost invisible in this depiction, hardly any influence of the grid refinement can be observed
for DLMC. An excessive peak emerges close to the lower wall for the coarsest discretization as well as a
considerably smaller one close to the upper wall. Considerably smaller peaks, which also move towards
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to the channel center, emerge for the discretizations employing 64 and 80 control volumes in each coordi-
nate direction. Surprisingly, however, no such distinct peak can be recognized for the discretization with 48
control volumes in each direction. The quantitative picture is provided in Tables 3 and 4, respectively. The



Table 3
Volume-averaged mean and root-mean-square values of model parameter CS and clipping percentage at Res = 590: DAMC on various
discretizations

(1): Mean value (2): Rms value (3)=(2)/(1) [%] (4): Clipped cv [%]

32 · 32 · 32 0.078 0.009 11.12 12.49
48 · 48 · 48 0.075 0.006 7.67 7.59
64 · 64 · 64 0.073 0.004 5.64 2.06
80 · 80 · 80 0.066 0.003 4.92 0.00

Table 4
Volume-averaged mean and root-mean-square values of model parameter CS and clipping percentage at Res = 590: DLMC on various
discretizations

(1): Mean value (2): Rms value (3) = (2)/(1) [%] (4): Clipped cv [%]

32 · 32 · 32 0.086 0.342 398.02 47.70
48 · 48 · 48 0.081 0.259 319.49 46.89
64 · 64 · 64 0.077 0.272 352.90 45.93
80 · 80 · 80 0.068 0.231 341.46 44.92
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mean values, the root-mean-values as well as the ratio of these two values are decreasing for both methods
when the discretization level increases, with the only exception being the case with 48 control volumes for
DLMC. In column (4) of both tables, the statistics of the clipping procedure (i.e., the ad hoc measure
common to both methods) are given. It is obvious that, after averaging in the case of DAMC, few control
volumes have to be clipped. This clipping percentage ranges from about 12.5% of all control volumes for
the coarsest discretization to no clipping at all for the finest discretization. For DLMC, there is substantial
need for clipping. Between 45% and 48% of all control volumes are clipped in the investigated cases, with
only a slight decrease in the number of clipped control volumes for the finer discretizations.

4.2. Turbulent flow in a diffuser

The numerical setup for turbulent flow in a planar asymmetric diffuser is identical to the one in [9], which is
also described in [8]. The diffuser geometry, which basically matches the experimental configuration of [1,25]
as well as the numerical setup in [15,32], is shown in Fig. 13. The inlet plane is located at x1 = �5 followed by
an inlet channel of length 5dc, where the inlet channel half-width dc, which matches the half-width of the pre-
ceding inflow channel, is set to be of unit length. The asymmetric diffuser of length 42dc opens with an angle of
10�. This corresponds to an expansion ratio of hin/hout = 4.7. It is followed by an outlet channel of height 9.4dc
Fig. 13. Diffuser geometry in x1-x2-plane.
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and length of approximately 58dc, which locates the outlet plane at about x1 = 100. The outlet channel length
matches the one in [32] and is considerably longer than the one in [15]. Due to the relatively long distance
between the last point of measurement and the outlet plane, any significant upstream influence of the outlet
plane is minimized. Nevertheless, the recovery into a canonical channel flow will not be reached even within
this longer outlet channel, see [1,15]. Both the upstream corner at x1 = 0 and the downstream corner at
x1 = 42 are rounded with a radius of r = 19.4, where the curvature centers are located as shown in Fig. 13.
The length of the domain in x3-direction (i.e., orthogonal to the depiction in Fig. 13) is chosen to be 8dc match-
ing the spanwise length in [32] and representing the largest value for the spanwise length investigated in [15].
The inflow channel matches the inlet channel in its dimensions in x2- and x3-direction. According to [32], an
inflow channel length of 12dc is chosen.

A zero velocity field is assumed to be the initial condition for the velocity. At the walls Cw, no-slip boundary
conditions (i.e., g = 0 in (4)) are assumed throughout the simulation time T. At the inflow boundary Cin, a
time-dependent inflow velocity vector g = uin(t) is prescribed. The inflow velocity uin(t) is generated in the
inflow channel as a result of a fully developed turbulent flow. At the outflow boundary Cout, a convective
boundary condition is prescribed subject to
ou

ot
þ uout ou

ox1

¼ 0 on Cout � ð0; T Þ; ð41Þ
where uout is calculated such that overall conservation is maintained (i.e., the mass flux through the outflow
boundary equals the mass flux through the inflow boundary). Finally, periodic boundary conditions are as-
sumed on the boundaries Cper in x3-direction (i.e., this periodicity is assumed orthogonal to the depiction
in Fig. 13).

Flow at Reynolds number Res = usdc/m = 500 is simulated in the inflow channel, where us denotes the tur-
bulent wall-shear velocity. The velocity at the outlet plane of the inflow channel represents the inflow velocity
uin for the diffuser. The Reynolds number for the flow in the diffuser is determined based on the streamwise
bulk mean velocity ub (i.e. Reb = ubdc/m). The corresponding Reynolds numbers Reb range from about 10,800
to 11,200 and are, thus, slightly higher than 9,000, which is the approximate Reynolds number in the afore-
mentioned experimental and numerical studies. However, the flow appears to be insensitive to the Reynolds
number in this higher Reynolds number range according to [15].

The inflow channel is spatially discretized using 80 · 64 · 80 control volumes in x1-, x2-, and x3-direction,
respectively. The distribution of control volumes in the wall-normal direction obeys a cosine function refining
towards the walls for the parent grid, with the subsequent hierarchical subdivision procedure applied. Com-
pared to the discretization of the inflow channel in [32], which employed 128 control volumes in each coordi-
nate direction, less than 20% the number of control volumes are used in the present case. The actual diffuser
including inlet and outlet channel is discretized using 290 · 64 · 80 control volumes in x1-, x2-, and x3-direc-
tion, respectively. The control volumes are uniformly distributed in the spanwise direction as in the inflow
channel. In the wall-normal direction, the same cosine function for refinement towards the walls is used as
in the inflow channel. This leads to an equivalent distribution in the inlet channel, which is then spreaded
in the asymmetric part of the diffuser. In the streamwise direction, the following control volume distribution
is employed: In the inlet channel, h1 decreases linearly from 0.15 to 0.05, in the asymmetric diffuser part, h1

increases linearly from 0.05 to 0.475, in the first part of the outlet channel (ranging from x1 = 42 to
x1 = 74.5), h1 increases linearly from 0.475 to 0.825, and in the remaining part of the outlet channel, the con-
trol volumes are uniformly distributed with h1 = 0.825. Comparing the discretization of the diffuser to the finer
discretization in [32], which employed 590 · 100 · 110 control volumes in x1-, x2-, and x3-direction, it is stated
that less than 23% the number of control volumes are used in the present case.

Both for the inflow channel and the diffuser simulation, the time step dt is fixed to be 0.002. 5,000 time steps
are performed to allow the flow to develop, and the statistics as well as the inflow velocity data are collected
during another 10,000 time steps. As a consequence, inflow data for 20 time units are available, which repre-
sents a sufficient period for a fluid particle to be converted over a distance roughly equal to the streamwise
diffuser dimension including inlet and outlet channel. In the actual diffuser simulation, 40,000 time steps cor-
responding to 80 time units are performed to allow the flow to develop, and the statistics are collected during
another 40,000 time steps. Thus, the inflow data are recycled 8 times during the diffuser simulation. As in the
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previous example, the characteristic length scale ratio �h=h for all simulations including a dynamic model is set
to 2.5 for the scale-separating operator Spm.

In the diffuser, the mean streamwise resolved velocity huh
1i is evaluated as profiles in the wall-normal direc-

tion x2 at four different locations in streamwise direction. These locations are distributed along the diffuser as
follows: one behind the entry to the asymmetric diffuser section (x1 = 6.4), one in the middle (x1 = 22.4), one
close to the end (x1 = 38.4), and one in the outlet channel (x1 = 58.4). These locations correspond to locations
where experimental as well as numerical results are available from the studies in [25,32]. At the same locations,
the root-mean-square values for the streamwise and wall-normal resolved velocities uh;rms

1 and uh;rms
1 are eval-

uated. All mean and root-mean-square values in the diffuser are obtained by averaging over all time steps of
the statistical period as well as over the homogeneous x3-direction. Both mean and root-mean-square veloc-
ities are scaled by the streamwise bulk mean velocity ub. The velocity results are compared to the numerical
data from [32], hereafter referred to as ‘‘Wu-LES’’, and to the experimental data from [25], hereafter referred
to as ‘‘Obi-experiment’’.

Fig. 14 depicts the profiles for the mean streamwise resolved velocity at these locations. Overall, it may be
observed that, on the one hand, the profiles for the dynamic model with special clipping (DMSC) and the pres-
ent dynamic localization model (DLMC) are almost indistinguishable and, on the other hand, also fairly close
to the reference data, in particular the numerical reference data from the Wu-LES. From the middle of the
asymmetric diffuser section on, the numerical data exhibit slight deviations from the experimental data, in par-
ticular towards the upper wall. The effect of the model can immediately be recognized by comparing the two
methods with a dynamic model to NM (i.e., the data obtained with no model at all).

Similar observations may generally be made for the streamwise root-mean-square values of the velocity at
the first two locations in Figs. 15(a) and (b), although both DMSC and DLMC exhibit a notable deviation
from the numerical and experimental reference data closer to the walls in Fig. 15(a). Further downstream
in the diffuser, the deviations from the reference data become more distinct, and slight discrepancies between
the two dynamic models emerge as well, without, however, showing a clear advantage for one or the other
model, see Figs. 15(c) and (d). The situation looks similar for the wall-normal root-mean-square values of
the velocity in Fig. 16. However, particularly towards the end of the asymmetric diffuser section and in the
outlet channel, slightly better results are obtained with DLMC than with DMSC, see Figs. 16(c) and (d).

Both along the upper and lower walls of the diffuser, the wall static pressure coefficient defined as
Cpwðx1Þ ¼
hph

wiðx1Þ � hph
wiðx1 ¼ �5Þ

1
2
qu2

b

; ð42Þ
where ph
w denotes the discrete pressure value at the walls, and the skin friction coefficient subject to
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Fig. 14. Mean streamwise velocity: (a) x1 = 6.4; (b) x1 = 22.4 (+1); (c) x1 = 38.4 (+2); (d) x1 = 58.4 (+3).



0

0

2

--2

--8

--4

--6

0.15

x2

(a) (b) (c) (d)

uh,rms
1
ub

0.30 0.45 0.60

Wu--LES

NM

DMSC

DLMC

Obi--exp.

Fig. 15. Rms streamwise velocity: (a) x1 = 6.4; (b) x1 = 22.4 (+0.15); (c) x1 = 38.4 (+0.30); (d) x1 = 58.4 (+0.45).

0

0

2

--2

--8

--4

--6

0.10

x2

(a) (b) (c) (d)

uh,rms
2
ub

0.20 0.30 0.40

Wu--LES

NM

DMSC

DLMC

Obi--exp.

Fig. 16. Rms wall-normal velocity: (a) x1 = 6.4; (b) x1 = 22.4 (+0.10); (c) x1 = 38.4 (+0.20); (d) x1 = 58.4 (+0.30).

V. Gravemeier / Journal of Computational Physics 218 (2006) 677–701 695
Cfðx1Þ ¼
hsh

wiðx1Þ
1
2
qu2

b

; ð43Þ
where sh
w denotes the discrete value of the wall shear stress, are evaluated as functions of the streamwise direc-

tion x1, respectively. In both (42) and (43), the fluid density q is assumed to be of unit value. The results for the
two coefficients in (42) and (43) are compared to the numerical data from the Wu-LES. Furthermore, the re-
sults for the skin friction coefficient are compared to the experimental data from Buice and Eaton [1], hereafter
referred to as ‘‘Buice-experiment’’. Due to the fact that the reference pressure value was chosen at a different
location in the Buice-experiment, namely x1 = �3.4 for the present configuration, it is not possible to accu-
rately compare the results for the wall static pressure coefficient as well.

In Figs. 17 and 18, the profiles of the wall static pressure coefficient along the upper and lower walls are
shown, respectively. It is noted that both DLMC and DMSC are closer to the reference data than NM,
and that DLMC gives even a slightly better prediction. Figs. 19 and 20 depict the skin friction coefficient along
the upper and lower wall, respectively. Both along the upper and lower wall, DLMC and DMSC are almost
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indistinguishable, with the only exception being the section between x1 	 2 and x1 	 15 at the lower wall,
where DMSC performs slightly better than DLMC. Nevertheless, both methods provide a worse prediction
than NM in most of this section along both the upper and lower wall. Further downstream, however, the
situation is reversed.

The mean value of the model parameter ÆCSæ is evaluated at the four locations specified above in Fig. 21. It
is obvious that the values obtained with DMSC are considerably larger than the ones obtained with DLMC.
This is likely the result of the different clipping procedure used in these two models. Due to the fact that
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DMSC always produces a positive value and DLMC is supposed to be zero in a clipped control volume, it
should be expected that the mean value is larger for DMSC overall. Aside from the actual value, both DMSC
and DLMC produce qualitatively very similar profiles as confirmed in Fig. 21.

The profiles for the root-mean-square value Crms
S are investigated in Fig. 22. Large values with distinct

peaks emerge for DLMC at each location, as in the channel flow. However, the root-mean-square values
for DMSC are definitely not negligible in contrast to the ones for DAMC in the channel. This is obviously
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Fig. 22. Rms value of model parameter CS: (a) x1 = 6.4; (b) x1 = 22.4 (+1); (c) x1 = 38.4 (+2); (d) x1 = 58.4 (+3).



Table 5
Volume-averaged mean and root-mean-square values of model parameter CS in the inflow channel

(1): Mean value (2): Rms value (3) = (2)/(1) [%]

DAMC 0.070 0.006 9.10
DMSC 0.160 0.106 66.45
DLMC 0.097 0.322 332.92

Table 6
Mean and root-mean-square values of model parameter CS and clipping percentage in the diffuser (mean and root-mean-square values are
obtained as an average of the results at the four investigated locations along the diffuser)

(1): Mean value (2): Rms value (3) = (2)/(1) [%] (4): Clipped cv [%]

DMSC 0.243 0.179 73.39 37.13
DLMC 0.155 0.509 328.17 46.99
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due to the fact that no averaging at all is performed. The quantitative picture is provided in Tables 5 and 6.
Firstly, the results from the independently simulated turbulent inflow channel are given in Table 5. These data
provide an opportunity to compare all three methods, DAMC, DMSC, and DLMC. The mean value for
DMSC is substantially larger than the one for the other methods, which are roughly comparable. In terms
of the root-mean-square value and the ratio of the mean value and the root-mean-square value, a clear order
may be observed with DLMC producing the largest value, DMSC a medium value, and DAMC the smallest
value. As in the channel flow, the standard deviation amounts to more than three times the mean value for
DLMC. For DMSC, the standard deviation is of the same order of magnitude as the mean value. For DAMC,
it is approximately ten times (i.e., about one order of magnitude) smaller than the mean value. The numbers
for DMSC and DLMC are confirmed in the actual diffuser, see Table 6. The data in columns (l)–(3) of Table 6
are calculated as an average over the four locations specified above. In column (4) of Table 6, the clipping
percentage for the complete diffuser domain is given. About 10% less control volumes are clipped for DMSC
than for DLMC. The clipping percentage for DLMC in the diffuser is also similar to the one in the channel.

Finally, a remark should be made concerning an important implication of the rapidly varying function CS.
In both channel and diffuser applications, a very slow convergence has been observed for the SOR solver in the
solution procedure of the matrix resulting from the discretization of the momentum equation. This may
directly be ascribed to the influence of this highly fluctuating function within the momentum equation, since
this slow convergence has not been observed for any of the other methods applied in this study. Thus, a more
efficient solver should be used in future applications of the dynamic localization model to reduce the excessive
time spent in the solution of the momentum equation. It is pointed out that this results from the use of the
dynamic localization model in general and is not exclusively related to the present implementation of the
model.

5. Conclusions

A new approach for a dynamic localization model has been proposed in this work. This approach has been
consistently integrated into LES based on a variational formulation, since the variationally formulated con-
dition for the model parameter has been considered as an additional equation in a resulting system of two
variational equations. This variational system may be solved either using a finite element or a finite volume
method. The new version of the dynamic localization proposed in this work has three important advantages
compared to the original dynamic localization model in [6].


 The solution of the new dynamic localization model is based on a simpler formulation, since the variation-
ally formulated condition for the model parameter is actually solved as a variational equation. This obvi-
ates the need to use a rather complicated Fredholm integral equation of the second kind for its solution as
proposed in [6].

 The solution of the integral equation as proposed in [6] had to be done iteratively. This is not necessary for

the new approach, since it may simply be solved as a linear variational equation.
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 A number of small independent local equations equal to the number of parent elements or control volumes
can be solved instead of one large global equation in [6]. Thus, the actual solution procedure may be
executed completely in parallel in a multi-processor simulation, in contrast to required inter-processor com-
munications during the solution of a global equation.

Moreover, it should be emphasized that no approximation as in [26] and no exploitation of any homoge-
neous coordinate directions as in [31] has been necessary in the development of this new approach. The only
ad hoc measure remaining in the present approach is a clipping procedure for elements or control volumes
exhibiting negative values of CS. The clipping is done to prevent potential instabilities in the course of the sim-
ulation. However, a similar measure had to be taken for the dynamic localization model (constrained) in [6]. A
few hints for a potential extension of the consistent dynamic localization model (constrained) to a consistent
dynamic localization model (k-equation) based on the one proposed in [6] have been given at the end of
Section 3.

The new consistent dynamic localization model has been tested for two different numerical flow examples,
turbulent flow in a channel and turbulent flow in a planar asymmetric diffuser. For the channel flow simula-
tions, it has been compared to the original dynamic model according to [5] with averaging over the homoge-
neous planes of the channel. Results of similar quality have been achieved for both modeling procedures, with,
however, the original dynamic model providing slightly better results for finer discretizations, and the dynamic
localization model giving slightly better predictions for coarser discretizations. Furthermore, no significant
differences have been observed between using the dynamic models either in a multiscale or a non-multiscale
environment, which is consistent with observations in [7]. Although the profiles for the mean value of the
model parameter have been similar, significant differences have been observed for the root-mean-square value
of the model parameter exhibiting very large values for the dynamic localization model. This indicates that
using the dynamic localization model indeed produces a rapidly varying model parameter function consistent
with observations in [22]. In the end, however, allowing for those rapid variations of the model parameter
function in the dynamic localization model does not produce superior results compared to the original
dynamic model with averaging over the homogeneous planes, where the rapid variations are not taken into
account. For the diffuser flow simulations, the dynamic localization model has been compared to the dynamic
model with special clipping according to [20]. Here again, the results are of similar quality with slightly better
results for the dynamic localization model, in particular for the wall static pressure coefficient and the root-
mean-square velocities in the wall-normal direction towards the end of the asymmetric diffuser section and
in the outlet channel. It has been confirmed for this example as well that the model parameter function is a
rapidly varying function when using the dynamic localization model. A furthergoing physical analysis of those
rapid variations appears to be necessary. A beneficial effect on the numerical results by taking into account the
rapid variations has indeed not been proven for both numerical examples. However, it has also been found
that, in order to deal with such highly fluctuating functions in a computationally efficient manner, more
sophisticated solvers should be used to reduce computational cost.

For the relatively simpler numerical flow examples in the present study (i.e. flow situations with at least one
homogeneous flow direction), the use of the dynamic localization model instead of the slightly more inconsis-
tent classical dynamic model or the dynamic model with special clipping, respectively, does not appear to be
advisable. This is due to the still higher complexity of the dynamic localization model, although it has already
been substantially reduced with respect to the original model version in [6]. However, as already cited from the
original study in [5] in the introduction, the development of the dynamic localization model aimed at ‘‘putting
the dynamic modeling procedure on firm theoretical foundations, so that the method could be applied to arbi-
trary inhomogeneous flows without recourse to ad hoc procedures’’. As a result, this model particularly aims
at completely inhomogeneous flows. In such flows, there is, on the one hand, no homogeneous spatial direc-
tion at all, such that approaches like the spatially averaged classical dynamic model are useless, and, on the
other hand, the use of other ad hoc procedures, such as the special clipping, might also not be justified. The
dynamic localization model represents a consistent approach for any arbitrary inhomogeneous flow. Further-
more, it has also proven to produce, at least, no worse results than dynamic models with ad hoc procedures for
the simpler numerical flow situations considered here (i.e., turbulent channel and diffuser flow) and in [6] (i.e.,
isotropic turbulence and turbulent flow over a backward-facing step). It is hoped that the advantages of the
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new version of the dynamic localization model proposed in the present study, which substantially reduce the
required computational effort, might encourage researchers to use the dynamic localization model for arbi-
trary inhomogeneous flows.
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